首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36730篇
  免费   1108篇
  国内免费   896篇
测绘学   939篇
大气科学   2847篇
地球物理   7488篇
地质学   13454篇
海洋学   3325篇
天文学   8033篇
综合类   240篇
自然地理   2408篇
  2022年   272篇
  2021年   438篇
  2020年   421篇
  2019年   480篇
  2018年   906篇
  2017年   862篇
  2016年   1034篇
  2015年   704篇
  2014年   1032篇
  2013年   1866篇
  2012年   1335篇
  2011年   1780篇
  2010年   1558篇
  2009年   2021篇
  2008年   1696篇
  2007年   1767篇
  2006年   1696篇
  2005年   1222篇
  2004年   1138篇
  2003年   1035篇
  2002年   993篇
  2001年   834篇
  2000年   780篇
  1999年   636篇
  1998年   676篇
  1997年   640篇
  1996年   529篇
  1995年   554篇
  1994年   471篇
  1993年   410篇
  1992年   413篇
  1991年   384篇
  1990年   446篇
  1989年   360篇
  1988年   341篇
  1987年   427篇
  1986年   340篇
  1985年   425篇
  1984年   522篇
  1983年   446篇
  1982年   444篇
  1981年   394篇
  1980年   415篇
  1979年   352篇
  1978年   341篇
  1977年   338篇
  1976年   307篇
  1975年   295篇
  1974年   308篇
  1973年   339篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
12.
Following Appalachian orogenesis, metamorphic rocks in central Newfoundland were exhumed and reburied under Tournaisian strata. New zircon fission‐track (ZFT) ages of metamorphic rocks below the Tournaisian unconformity yield post‐depositionally reset ages of 212–235 Ma indicating regional fluid‐absent reheating to at least ≥220°C. Post‐Tournaisian sedimentary thicknesses in surrounding basins show that burial alone cannot explain such temperatures, thus requiring that palaeo‐geothermal gradients increased to ≥30–40°C/km before final late Triassic accelerated cooling. We attribute these elevated palaeo‐geothermal gradients to localized thermal blanketing by insulating sediments overlying radiogenic high‐heat‐producing granitoids. Late Triassic rifting and magmatism before break up of Pangaea likely also contributed to elevated heat flow, as well as uplift, triggering late Triassic accelerated cooling and exhumation. Thermochronological ages of 240–200 Ma are seen throughout Atlantic Canada, and record rifting and basaltic magmatism on the conjugate margins of the Central Atlantic Ocean preceding the onset of oceanic spreading at ~190 Ma.  相似文献   
13.
Hyperspectral imaging can be used to rapidly identify and map the spatial distributions of many minerals. Here, hyperspectral mapping in three wavelength regions (visible and near‐infrared, shortwave infrared, and thermal infrared) was applied to drill cores (ST001, ST002, and ST003) penetrating a continuous sequence of crater‐fill breccias from the Steen River impact structure in Alberta, Canada. The combined data sets reveal distinct mineralogical layering, with breccias derived predominantly from sedimentary rocks overlying those derived from granitic basement. This stratigraphy demonstrates that the breccias were not appreciably disturbed following deposition, which is inconsistent with formation models of similar breccias (suevites) by explosive impact melt–fluid interaction. At Steen River, volatiles from sedimentary target rocks were an inherent part of forming these enigmatic breccias. Approximately three quarters of terrestrial impact structures contain sedimentary target rocks; therefore, the role of volatiles in producing so‐called suevitic breccias may be more widespread than previously realized. The hyperspectral maps, specifically within the SWIR wavelength region, also delineate minerals associated with postimpact hydrothermal activity, including ammoniated clay and feldspar minerals not detectable using traditional techniques. These nitrogen‐bearing minerals may have originated from microbial processes, associated with oil‐ and gas‐producing units in the crater vicinity. Such minerals may have important implications for the production of habitable environments by impact‐induced hydrothermal activity on Earth and Mars.  相似文献   
14.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
15.
Izmailov  I. S.  Shakht  N. A.  Polyakov  E. V.  Gorshanov  D. L.  Pogodin  M. A. 《Astrophysics》2021,64(2):160-171
Astrophysics - This paper is a continuation of our earlier work devoted to determining the orbit and mass of the star 61 Cyg and the changes in the photometric characteristics of its components....  相似文献   
16.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
17.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
18.
在工程实践应用中,为了有效利用GPS高程数据,减少对传统水准测量的依赖,提高GPS高程异常的拟合精度便显得十分重要。为此,本文在介绍二次曲面拟合和最小二乘配置拟合基本原理分析、算法过程推导的基础上,提出了一种新的高程异常拟合方法。首先在二次曲面拟合的基础上,计算得到原始观测数据与拟合数据之间的残差序列,然后采用最小二乘配置模型对包括二次曲面拟合模型误差的综合误差进行优化减弱,最后得到新的高程异常。通过实例,将二次曲面拟合法,最小二乘配置法与文中提出的新方法进行比较分析。结果表明:新的组合方法的拟合预测精度要明显优于最小二乘配置及二次曲面拟合。  相似文献   
19.
Subsurface tile drainage speeds water removal from agricultural fields that are historically prone to flooding. While managed drainage systems improve crop yields, they can also contribute tothe eutrophication of downstream ecosystems, as tile-drained systems are conduits for nutrients to adjacent waterways. The changing climate of the Midwestern US has already altered precipitation regimes which will likely continue into the future, with unknown effects on tile drain water and nutrient loss to waterways. Adding vegetative cover (i.e., as winter cover crops) is one approach that can retain water and nutrients on fields to minimize export via tile drains. In the current study, we evaluate the effect of cover crops on tile drain discharge and soluble reactive phosphorus (SRP) loads using bi-monthly measurements from 43 unique tile outlets draining fields with or without cover crops in two watersheds in northern Indiana. Using four water years of data (n = 844 measurements), we examined the role of short-term antecedent precipitation conditions and variation in soil biogeochemistry in mediating the effect of cover crops on tile drain flow and SRP loads. We observed significant effects of cover crops on both tile drain discharge and SRP loads, but these results were season and watershed specific. Cover crop effects were identified only in spring, where their presence reduced tile drain discharge in both watersheds and SRP loads in one watershed. Varying effects on SRP loads between watersheds were attributed to different soil biogeochemical characteristics, where soils with lower bioavailable P and higher P sorption capacity were less likely to have a cover crop effect. Antecedent precipitation was important in spring, and cover crop differences were still evident during periods of wet and dry antecedent precipitation conditions. Overall, we show that cover crops have the potential to significantly decrease spring tile drain P export, and these effects are resilient to a wide range of precipitation conditions.  相似文献   
20.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号